250 research outputs found

    Symmetric, Hankel-symmetric, and Centrosymmetric Doubly Stochastic Matrices

    Get PDF
    We investigate convex polytopes of doubly stochastic matrices having special structures: symmetric, Hankel symmetric, centrosymmetric, and both symmetric and Hankel symmetric. We determine dimensions of these polytopes and classify their extreme points. We also determine a basis of the real vector spaces generated by permutation matrices with these special structures

    Exchange coupling between magnetic layers across non-magnetic superlattices

    Full text link
    The oscillation periods of the interlayer exchange coupling are investigated when two magnetic layers are separated by a metallic superlattice of two distinct non-magnetic materials. In spite of the conventional behaviour of the coupling as a function of the spacer thickness, new periods arise when the coupling is looked upon as a function of the number of cells of the superlattice. The new periodicity results from the deformation of the corresponding Fermi surface, which is explicitly related to a few controllable parameters, allowing the oscillation periods to be tuned.Comment: 13 pages; 5 figures; To appear in J. Phys.: Cond. Matte

    Derandomized Construction of Combinatorial Batch Codes

    Full text link
    Combinatorial Batch Codes (CBCs), replication-based variant of Batch Codes introduced by Ishai et al. in STOC 2004, abstracts the following data distribution problem: nn data items are to be replicated among mm servers in such a way that any kk of the nn data items can be retrieved by reading at most one item from each server with the total amount of storage over mm servers restricted to NN. Given parameters m,c,m, c, and kk, where cc and kk are constants, one of the challenging problems is to construct cc-uniform CBCs (CBCs where each data item is replicated among exactly cc servers) which maximizes the value of nn. In this work, we present explicit construction of cc-uniform CBCs with Ω(mc1+1k)\Omega(m^{c-1+{1 \over k}}) data items. The construction has the property that the servers are almost regular, i.e., number of data items stored in each server is in the range [ncmn2ln(4m),ncm+n2ln(4m)][{nc \over m}-\sqrt{{n\over 2}\ln (4m)}, {nc \over m}+\sqrt{{n \over 2}\ln (4m)}]. The construction is obtained through better analysis and derandomization of the randomized construction presented by Ishai et al. Analysis reveals almost regularity of the servers, an aspect that so far has not been addressed in the literature. The derandomization leads to explicit construction for a wide range of values of cc (for given mm and kk) where no other explicit construction with similar parameters, i.e., with n=Ω(mc1+1k)n = \Omega(m^{c-1+{1 \over k}}), is known. Finally, we discuss possibility of parallel derandomization of the construction

    First-Digit Law in Nonextensive Statistics

    Full text link
    Nonextensive statistics, characterized by a nonextensive parameter qq, is a promising and practically useful generalization of the Boltzmann statistics to describe power-law behaviors from physical and social observations. We here explore the unevenness of the first digit distribution of nonextensive statistics analytically and numerically. We find that the first-digit distribution follows Benford's law and fluctuates slightly in a periodical manner with respect to the logarithm of the temperature. The fluctuation decreases when qq increases, and the result converges to Benford's law exactly as qq approaches 2. The relevant regularities between nonextensive statistics and Benford's law are also presented and discussed.Comment: 11 pages, 3 figures, published in Phys. Rev.

    Model category extensions of the Pirashvili-S{\l}omi\'{n}ska theorems

    Full text link
    We describe the class of semi-stable model categories, which generalize the equivalence of finite products and coproducts in abelian and stable model categories, and use this to establish Morita equivalences among categories of functors. We provide a construction of pairs of small categories--known as conjugate pairs--whose associated categories of diagrams are Quillen equivalent in the semi-stable setting. We frame our development in the context of Morita theory, following Slominska's work on similar questions for categories of functors enriched over and taking values in R-modules.Comment: 27 pages, submitted to Journal of Homotopy and Related Structure

    Parameterized Edge Hamiltonicity

    Full text link
    We study the parameterized complexity of the classical Edge Hamiltonian Path problem and give several fixed-parameter tractability results. First, we settle an open question of Demaine et al. by showing that Edge Hamiltonian Path is FPT parameterized by vertex cover, and that it also admits a cubic kernel. We then show fixed-parameter tractability even for a generalization of the problem to arbitrary hypergraphs, parameterized by the size of a (supplied) hitting set. We also consider the problem parameterized by treewidth or clique-width. Surprisingly, we show that the problem is FPT for both of these standard parameters, in contrast to its vertex version, which is W-hard for clique-width. Our technique, which may be of independent interest, relies on a structural characterization of clique-width in terms of treewidth and complete bipartite subgraphs due to Gurski and Wanke

    Sign patterns for chemical reaction networks

    Full text link
    Most differential equations found in chemical reaction networks (CRNs) have the form dx/dt=f(x)=Sv(x)dx/dt=f(x)= Sv(x), where xx lies in the nonnegative orthant, where SS is a real matrix (the stoichiometric matrix) and vv is a column vector consisting of real-valued functions having a special relationship to SS. Our main interest will be in the Jacobian matrix, f(x)f'(x), of f(x)f(x), in particular in whether or not each entry f(x)ijf'(x)_{ij} has the same sign for all xx in the orthant, i.e., the Jacobian respects a sign pattern. In other words species xjx_j always acts on species xix_i in an inhibitory way or its action is always excitatory. In Helton, Klep, Gomez we gave necessary and sufficient conditions on the species-reaction graph naturally associated to SS which guarantee that the Jacobian of the associated CRN has a sign pattern. In this paper, given SS we give a construction which adds certain rows and columns to SS, thereby producing a stoichiometric matrix S^\widehat S corresponding to a new CRN with some added species and reactions. The Jacobian for this CRN based on S^\hat S has a sign pattern. The equilibria for the SS and the S^\hat S based CRN are in exact one to one correspondence with each equilibrium ee for the original CRN gotten from an equilibrium e^\hat e for the new CRN by removing its added species. In our construction of a new CRN we are allowed to choose rate constants for the added reactions and if we choose them large enough the equilibrium e^\hat e is locally asymptotically stable if and only if the equilibrium ee is locally asymptotically stable. Further properties of the construction are shown, such as those pertaining to conserved quantities and to how the deficiencies of the two CRNs compare.Comment: 23 page

    SimRank*: effective and scalable pairwise similarity search based on graph topology

    Get PDF
    Given a graph, how can we quantify similarity between two nodes in an effective and scalable way? SimRank is an attractive measure of pairwise similarity based on graph topologies. Its underpinning philosophy that “two nodes are similar if they are pointed to (have incoming edges) from similar nodes” can be regarded as an aggregation of similarities based on incoming paths. Despite its popularity in various applications (e.g., web search and social networks), SimRank has an undesirable trait, i.e., “zero-similarity”: it accommodates only the paths of equal length from a common “center” node, whereas a large portion of other paths are fully ignored. In this paper, we propose an effective and scalable similarity model, SimRank*, to remedy this problem. (1) We first provide a sufficient and necessary condition of the “zero-similarity” problem that exists in Jeh and Widom’s SimRank model, Li et al. ’s SimRank model, Random Walk with Restart (RWR), and ASCOS++. (2) We next present our treatment, SimRank*, which can resolve this issue while inheriting the merit of the simple SimRank philosophy. (3) We reduce the series form of SimRank* to a closed form, which looks simpler than SimRank but which enriches semantics without suffering from increased computational overhead. This leads to an iterative form of SimRank*, which requires O(Knm) time and O(n2) memory for computing all (n2) pairs of similarities on a graph of n nodes and m edges for K iterations. (4) To improve the computational time of SimRank* further, we leverage a novel clustering strategy via edge concentration. Due to its NP-hardness, we devise an efficient heuristic to speed up all-pairs SimRank* computation to O(Knm~) time, where m~ is generally much smaller than m. (5) To scale SimRank* on billion-edge graphs, we propose two memory-efficient single-source algorithms, i.e., ss-gSR* for geometric SimRank*, and ss-eSR* for exponential SimRank*, which can retrieve similarities between all n nodes and a given query on an as-needed basis. This significantly reduces the O(n2) memory of all-pairs search to either O(Kn+m~) for geometric SimRank*, or O(n+m~) for exponential SimRank*, without any loss of accuracy, where m~≪n2 . (6) We also compare SimRank* with another remedy of SimRank that adds self-loops on each node and demonstrate that SimRank* is more effective. (7) Using real and synthetic datasets, we empirically verify the richer semantics of SimRank*, and validate its high computational efficiency and scalability on large graphs with billions of edges
    corecore